Neutrino as a Dark Matter Candidate in a Leptophobic Z' Model

C. S. Kim

(Yonsei University)

PLB636(2006)270:PLB664(2008)84

With J.H. Jeon, Jake Lee, Chaehyun Yu

Exclusive $B \to M \nu \overline{\nu} \ (M = \pi, K, \rho, K^*)$ Decays

• We investigate $B \to M \nu \overline{\nu}$ $(M = \pi, K, \rho, K^*)$ decays in the leptophobic Z' model as a possible candidate of new physics in the EW penguin sector.

SM
$$H_{\text{eff}}(b \to q \nu_{\text{SM}} \bar{\nu}_{\text{SM}}) = \frac{G_F \alpha}{2\pi \sqrt{2}} V_{tb} V_{tq}^* C_{10}^{\nu} \bar{q} \gamma^{\mu} (1 - \gamma^5) b \bar{\nu} \gamma_{\mu} (1 - \gamma^5) \nu,$$

- C_{10}^{ν} , dominated by the short-distance dynamics with top quark exchange, has the theoretical uncertainty only due to the error of top quark mass
- In order to cancel the uncertainties from the hadronic form factors, we can take ratios

$$\frac{\mathcal{B}(B^{\pm} \to \pi^{\pm}\nu\bar{\nu})}{\mathcal{B}(B^{\pm} \to \pi^{0}e^{\pm}\nu)} \qquad \frac{\mathcal{B}(B^{\pm} \to \rho^{\pm}\nu\bar{\nu})}{\mathcal{B}(B^{\pm} \to \rho^{0}e^{\pm}\nu)} \qquad \frac{\mathcal{B}(B^{\pm} \to K^{*\pm}\nu\bar{\nu})}{\mathcal{B}(B^{\pm} \to \rho^{0}e^{\pm}\nu)}$$

• Additional right-handed neutrinos(v^c , s^c) can contribute to the missing energy signal in $B \to M + \cancel{E}$ Decays

$$\mathcal{B}(B \to M \nu \bar{\nu}) = \mathcal{B}(B \to M \nu_{\text{SM}} \bar{\nu}_{\text{SM}}) + \mathcal{B}(B \to M \nu_R \bar{\nu}_R).$$

where v_R could be a candidate of Dark matter

Experimental bounds

Table B.1 Expected BRs in the SM and experimental bounds (90% C.L.) in units of 10^{-6} .

mode	${\rm BRs}$ in the ${\rm SM}$	Experimental bounds (present)
$B \to K \nu \bar{\nu}$	$5.31_{-1.03}^{+1.11}$	< 14 [83]
$B \to \pi \nu \bar{\nu}$	$0.22^{+0.27}_{-0.17}$	< 100 [84]
$B \to K^* \nu \bar{\nu}$	$11.15^{+3.05}_{-2.70}$	< 140 [83]
$B \to \rho \nu \bar{\nu}$	$0.49^{+0.61}_{-0.38}$	< 150 [83]

< 36 < 100 -

- [83] K. F. Chen et al. [BELLE Collaboration], Phys. Rev. Lett. 99, 221802 (2007) [arXiv:0707.0138 [hep-ex]].
- [84] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 94, 101801 (2005) [arXiv:hep-ex/0411061].

LEPTOPHOBIC Z' MODEL

- ✓ Extra neutral U(1) gauge boson, Z'
 - has been considered one of the extensions of the SM
 - motivated by String-inspired GUTs (J.L.Hewett, T.G.Rizzo, M.Cvetic, P.Langacker, etc) Dynamical symmetry breaking models (G.Buchalla, G.Burdman, etc) Extra dimension models (M.Masip, A.Pomarol) Little higgs models (N.Arkani-Hamed, A.G.Cohen, T.Han, etc),
- ✓ Leptophobic Z' can come from the string-inspired GUTs (E₆ or Flipped SU(5))
 - does not couple to SM leptons
 - introduced to explain the R_b-R_c puzzle at LEP and anomalous high-E_T jet cross section at CDF

Leptophobic Z' in E_6 (& Flipped) GUTs

- \checkmark comes from heterotic superstring ($E_8 \rightarrow SU(3) \times E_6$)
- √ was the natural anomaly free choice for a GUT group after SO(10)
- ✓ could have several intermediate mass breaking scales
- ✓ Maximal breakings of E₆: $\begin{cases} 1. & SO(10) \times U(1) \\ 2. & [SU(3)]^3 \\ 3. & SU(2) \times SU(6) \end{cases}$

If we consider the following breaking chain

$$E_6 \to SO(10) \times U(1)_{\psi}$$

$$\to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$$

$$\to SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$$

U(1)' can be a linear combination of

- 1. two U(1)s $[U(1)' = U(1)_{\psi} \sin \theta U(1)_{\chi} \cos \theta$, Flipped SU(5)]
- 2. three U(1)s [ambiguity of embeddings, Flipped SU(5) + Ma]

$$E_6 \to SO(10) \times U(1)_{\psi}$$

$$\to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$$

$$\to SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$$

directly $SU(5) \rightarrow SM : SU(5)$ (Geogri-Glashow)

•
$$SU(5)_{GG}$$
: $F = (10, \frac{1}{2}) = \{Q, u^c, e^c\}$ $\overline{f} = (\overline{5}, -\frac{3}{2}) = \{L, d^c\}$ $l^c = (1, \frac{5}{2}) = \{v^c\}$
• $U(1)' = U(1)_{\psi} \sin \theta - U(1)_{\chi} \cos \theta$

- ✓ $SU(5)XU(1)_X \rightarrow SM$: Flipped SU(5) (S.M.Barr,1982) Flipped SU(5) is a different breaking pattern of SO(10)

• Flipped
$$SU(5)$$
: $F = (10, \frac{1}{2}) = \{Q, d^c, v^c\}$ $\overline{f} = (\overline{5}, -\frac{3}{2}) = \{L, u^c\}$ $l^c = (1, \frac{5}{2}) = \{e^c\}$

•
$$Y/2 = \alpha U(1)_{SU(5)} + \beta U(1)_{\chi} (\alpha = \beta = -1/5)$$

Leptophobic Z' does not couple to multiplet(f) and singlet(f)

There is an ambiguity in the assignment of the various fields

Table 2.1. Charges of fermions contained in the **27** representation of E_6 within the conventional particle embedding [1].

SO(10)	SU(5)	Particles	$SU(3)_c$	Y/2	$2\sqrt{10}Q_{\chi}$	$2\sqrt{6Q_{\psi}}$
16	10	$Q = (u, d)^T$	3	1/6	-1	1
		u^c	3	-2/3	-1	1
		e^{c}	1	1	-1	1
	$\bar{5}$	$L = (\nu, e)^T$	1	-1/2	3	1
		d^c	3	1/3	3	1
	1	$ u^c$	1	0	- 5	1
10	$\bar{5}$	$H = (N, E)^T$	1	-1/2	-2	-2
		h^c	$\bar{3}$	1/3	-2	-2
	5	$H^c = (N^c, E^c)^T$	1	1/2	2	-2
		h	3	-1/3	2	-2
1	1	S^c	1	0	0	4

- 1) $Q_{\varphi,\chi}$ of the fields (L,d^c,v^c) can be interchanged with those of (H,h^c,S^c)
- 2) The pairs (u^c, e^c) and (d^c, v^c) are interchanged: Flpped SU(5)
- 3) We can consider the interchange of both (1) and (2) simutaneously

Leptophobic Z' in stringy flipped SU(5)

(J.L Lopez, D.V. Nanopoulos, and K.J.Yuan (NPB399,654(1993))

• Gauge group:
$$\underbrace{SU(5) \times U(1)}_{observable} \times \underbrace{SO(10) \times SU(4)}_{hidden} \times \underbrace{U(1)^5}_{U(1)'}$$

In addition to its own beauty this scenario has the following phenomenologically interesting features:

- The new Z' coupling is generation dependent and can generate FCNC processes.
- The FCNC couplings allow large CP violation.
- It violates the isospin symmetry in the right-handed up- and down-quarks.
- The new gauge boson interaction maximally violates the parity in the up-quark sector.

In the mass eigenstates the interactions of Z' gauge boson with the quarks can be written as

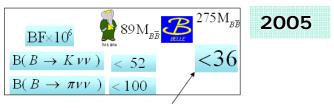
$$\mathcal{L} = -\frac{g_2}{\cos \theta_W} \delta Z_{\mu}' \Biggl(\overline{u} \gamma^{\mu} P_L \Biggl[V_L^u \hat{c} V_L^{u\dagger} \Biggr] u + \overline{d} \gamma^{\mu} P_L \Biggl[V_L^d \hat{c} V_L^{d\dagger} \Biggr] d + \overline{d} \gamma^{\mu} P_R \Biggl[V_R^d \hat{c} V_R^{d\dagger} \Biggr] d \Biggr),$$

where δ parameterizes the size of the new gauge coupling relative to the SM coupling and is expected to be of $\mathcal{O}(1)$. The $\hat{c} = \operatorname{diag}(c_1, c_2, c_3)$ represent the generation-dependent U(1)' quantum numbers

We introduce complex parameters, L and R,

$$\begin{bmatrix} V_L^d \hat{c} V_L^{d\dagger} \end{bmatrix}_{23} \equiv \frac{1}{2} L_{sb}^{Z'}, \quad \begin{bmatrix} V_R^d \hat{c} V_R^{d\dagger} \end{bmatrix}_{23} \equiv \frac{1}{2} R_{sb}^{Z'}.$$

$$c_L^u \equiv \begin{bmatrix} V_L^u \hat{c} V_L^{u\dagger} \end{bmatrix}_{11}, \quad c_L^d \equiv \begin{bmatrix} V_L^d \hat{c} V_L^{d\dagger} \end{bmatrix}_{11}, \quad c_R^d \equiv \begin{bmatrix} V_R^d \hat{c} V_R^{d\dagger} \end{bmatrix}_{11}.$$


Neutral – Current Interaction

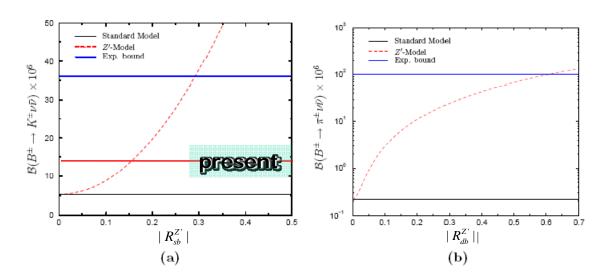
$$\mathcal{L}_{\text{FCNC}}^{Z'} = -\frac{g_2}{2\cos\theta_W} \left[L_{sb}^{Z'} \overline{s}_L \gamma_\mu b_L Z'^\mu + R_{sb}^{Z'} \overline{s}_R \gamma_\mu b_R Z'^\mu \right] + h.c,$$

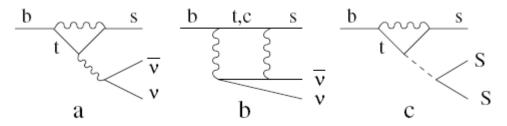
For R-handed neutrinos

$$\mathcal{L}(Z'\overline{\nu}_R\nu_R) = -\frac{g}{\cos\theta_W}\delta \ Z'^{\mu} \left[\overline{\nu} \ c_R^d P_R \nu\right],$$

 $\mid R_{qb}^{Z'} \mid$

Kvv sensitivity now <10X SM rate




FIG. 1: Branching ratios for (a) $B^{\pm} \to K^{\pm} \nu \bar{\nu}$ and (b) $B^{\pm} \to \pi^{\pm} \nu \bar{\nu}$, where ν can be the ordinary SM neutrinos or right-handed neutrinos.

$$|R_{sb}^{Z'}| \le 0.29, |R_{db}^{Z'}| \le 0.61,$$

 $|R_{sb}^{Z'}| \le 0.14$

Dark Matter Particle Production in b-s Transition with Missing Energy

Chris Bird et al, PRL 93,201803(2004)

- \checkmark B decays can be effective probe of dark matter near the lower edge of the Lee-Weinberg window. ($m_s \sim 2.6 \; \text{GeV}$)
- ✓ Pair production of WIMPs in the decays $B \rightarrow K(K^*)SS$ can compete with the standard model mode $B \rightarrow K(K^*)vvbar$.

✓ the singlet scalar model(S) of dark matter

$$-\mathcal{L}_{S} = \frac{\lambda_{S}}{4} S^{4} + \frac{m_{0}^{2}}{2} S^{2} + \lambda S^{2} H^{\dagger} H$$

$$= \frac{\lambda_{S}}{4} S^{4} + \frac{1}{2} (m_{0}^{2} + \lambda v_{EW}^{2}) S^{2} + \lambda v_{EW} S^{2} h + \frac{\lambda}{2} S^{2} h^{2},$$

$$m_{S}^{2} = m_{0}^{2} + \lambda v_{EW}^{2}$$

the physical mass of the scalar S can be small even if each term is on the order $\pm O(\upsilon^2_{\rm EM})$

- ✓ More model-building possibilities open up if new particles, other than EW gauge bosons or Higgs fields, mediate the interaction between WIMPs and SM particles.
- ✓ The Higgs mass, m_h ,is heavy compared to m_s of interest, which means that in all processes such as annihilation, pair production, and elastic scattering of S particles, λ and m_h enter in the same combination, $\lambda^2 m_{h^{-4}}$

The effective Lagrangian for b→s transition

$$\mathcal{L}_{b \to s \not E} = \frac{1}{2} C_{DM} m_b \bar{s}_L b_R S^2 - C_{\nu} \bar{s}_L \gamma_{\mu} b_L \bar{\nu} \gamma_{\mu} \nu + (\text{H.c.}).$$

$$\operatorname{Br}_{B^+ \to K^+ + \not E} = \operatorname{Br}_{B^+ \to K^+ \nu \bar{\nu}} + \operatorname{Br}_{B^+ \to K^+ SS}$$

 $\simeq 4 \times 10^{-6} + 2.8 \times 10^{-4} \kappa^2 F(m_S).$

Br<sub>B+
$$\to K^{+*}+\not\!\!E} \simeq 1.3 \times 10^{-5} + 4.3 \times 10^{-4} \kappa^2 F(m_S)$$
.</sub>

$$\kappa^{2} \equiv \lambda^{2} \left(\frac{100 \text{ GeV}}{m_{h}}\right)^{4}$$

$$F(m_{S}) = \int_{\hat{s}_{\min}}^{\hat{s}_{\max}} f_{0}(\hat{s})^{2} I(\hat{s}, m_{S}) d\hat{s} \left[\int_{\hat{s}_{\min}}^{\hat{s}_{\max}} f_{0}(\hat{s})^{2} I(\hat{s}, 0) d\hat{s}\right]^{-1}$$

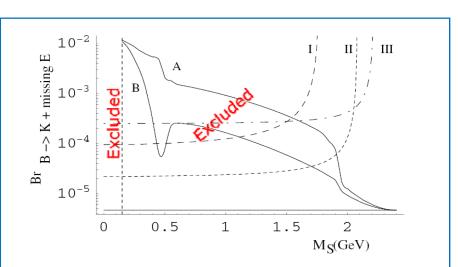
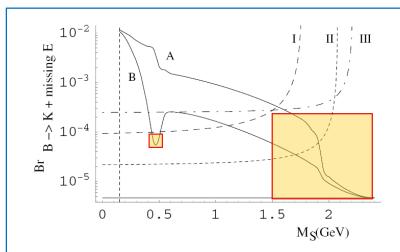
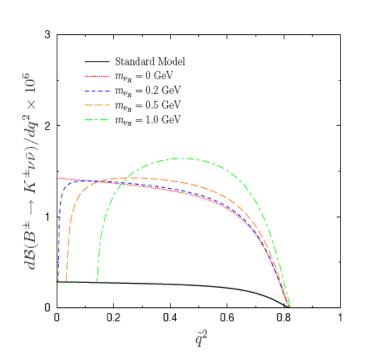
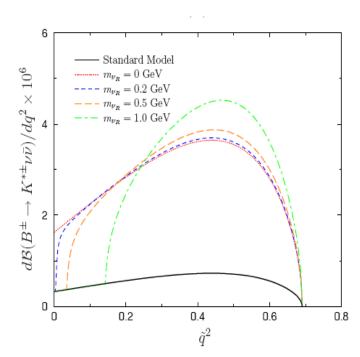



FIG. 2. Predicted branching ratios for the decay $B \to K + missing\ energy$, with current limits from $BABAR\ (I)\ [12]$, CLEO (III) [13], and expected results from $BABAR\ (II)$. Parameter space above curves I and III is excluded. The horizontal line shows the SM $B \to K \nu \bar{\nu}$ signal. Parameter space to the left of the vertical dashed line is also excluded by $K^+ \to \pi^+ E$.

In the interval 350 -650 MeV

the strangeness threshold opens up and annihilation into pions via the s-channel resonance becomes important.


Above $m_s = 1 \text{ GeV}$


Curve B take into account the annihilation into hadrons mediated by $\alpha_{\scriptscriptstyle S}$ with the twofold enhancement suggested by charmonium decays

Curve A uses the perturbative formula

- *vMSM model* (T.Asaka and M. Shaposhnikov, PLB 620,17 (2005))
 - the extension of the SM by the ν_R with masses smaller than the EW scale
 - can explain simutaneously dark matter and baryon asymmetry of the universe and
 be consistent with the experiments on neutrino oscillations assuming that
 Majorana masses of v_R are the order of the EW scale or below and Yukawa couplings are very small.

Exclusive $B \to K^{(*)} \nu \overline{\nu}$ Decays

- We normalized the integrated BRs such that the BRs in the leptophobic Z' model are 5 times larger than those in the SM
 - the sharp rise near the threshold point allows to increase the accuracy of the mass measurement of the lightest v_R
 - Unfortunately, if its mass is lower than a few hundred MeV, it is very hard to find the difference from the masseless neutrino case

Exclusive $B \to \pi(\rho) \nu \overline{\nu}$ Decays

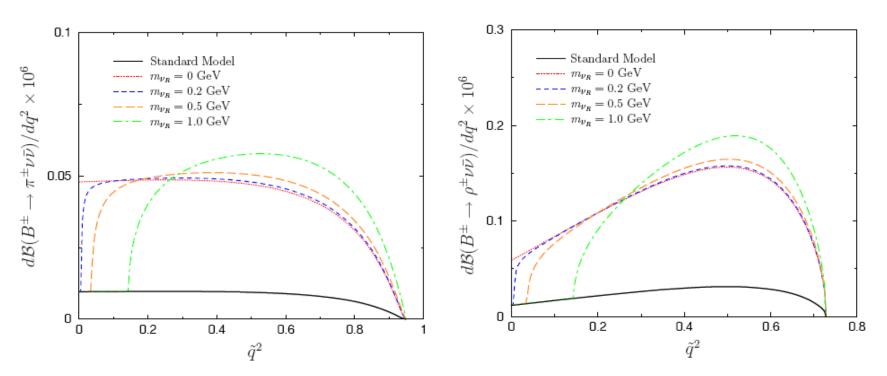


FIG. 3: Differential BRs as a function of the normalized momentum transfer square, $\tilde{q}^2 = q^2/M_B^2$, in units of 10^{-6} , for (a) $B^{\pm} \to K^{\pm}\nu\bar{\nu}$, (b) $B^{\pm} \to \pi^{\pm}\nu\bar{\nu}$, (c) $B^{\pm} \to K^{*\pm}\nu\bar{\nu}$, and (d) $B^{\pm} \to \rho^{\pm}\nu\bar{\nu}$. Here the decay rates in the leptophobic Z' model are normalized to be five times larger than those in the SM.

Conclusion

- ✓ The exclusive FCNC processes B→Mvvbar are very adequate to measure new physics in the leptophobic Z' model with the R-handed neutrinos.
- ✓ This model could be quite important in the context of possibly large new physics scenario in the EW penguin sector.
- ✓ We show that ratios of BRs can reduce the large hadronic uncertainty
 from form factors.
- ✓ The differential BRs are very useful if the R-handed neutrinos have the sub-GeV masses
- ✓ We also note that the R-handed neutrinos could be accommodated
 with the nuMSM scenario